\(\int \frac {(a+b \cos (c+d x))^3 (A+B \cos (c+d x))}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\) [364]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 33, antiderivative size = 204 \[ \int \frac {(a+b \cos (c+d x))^3 (A+B \cos (c+d x))}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=-\frac {2 \left (3 a^3 A+15 a A b^2+15 a^2 b B-5 b^3 B\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 \left (3 a^2 A b+3 A b^3+a^3 B+9 a b^2 B\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 a^2 (9 A b+5 a B) \sin (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 a \left (3 a^2 A+14 A b^2+15 a b B\right ) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}}+\frac {2 a A (a+b \cos (c+d x))^2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)} \]

[Out]

-2/5*(3*A*a^3+15*A*a*b^2+15*B*a^2*b-5*B*b^3)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2
*d*x+1/2*c),2^(1/2))/d+2/3*(3*A*a^2*b+3*A*b^3+B*a^3+9*B*a*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)
*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/15*a^2*(9*A*b+5*B*a)*sin(d*x+c)/d/cos(d*x+c)^(3/2)+2/5*a*A*(a+b*cos
(d*x+c))^2*sin(d*x+c)/d/cos(d*x+c)^(5/2)+2/5*a*(3*A*a^2+14*A*b^2+15*B*a*b)*sin(d*x+c)/d/cos(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.47 (sec) , antiderivative size = 204, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {3068, 3110, 3100, 2827, 2720, 2719} \[ \int \frac {(a+b \cos (c+d x))^3 (A+B \cos (c+d x))}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 a \left (3 a^2 A+15 a b B+14 A b^2\right ) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}}+\frac {2 a^2 (5 a B+9 A b) \sin (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (a^3 B+3 a^2 A b+9 a b^2 B+3 A b^3\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}-\frac {2 \left (3 a^3 A+15 a^2 b B+15 a A b^2-5 b^3 B\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a A \sin (c+d x) (a+b \cos (c+d x))^2}{5 d \cos ^{\frac {5}{2}}(c+d x)} \]

[In]

Int[((a + b*Cos[c + d*x])^3*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(7/2),x]

[Out]

(-2*(3*a^3*A + 15*a*A*b^2 + 15*a^2*b*B - 5*b^3*B)*EllipticE[(c + d*x)/2, 2])/(5*d) + (2*(3*a^2*A*b + 3*A*b^3 +
 a^3*B + 9*a*b^2*B)*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*a^2*(9*A*b + 5*a*B)*Sin[c + d*x])/(15*d*Cos[c + d*x]
^(3/2)) + (2*a*(3*a^2*A + 14*A*b^2 + 15*a*b*B)*Sin[c + d*x])/(5*d*Sqrt[Cos[c + d*x]]) + (2*a*A*(a + b*Cos[c +
d*x])^2*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3068

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(b*c - a*d))*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1
)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(d*(n + 1)*(c^2 - d^2)), Int[(a + b*Si
n[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1)*Simp[b*(b*c - a*d)*(B*c - A*d)*(m - 1) + a*d*(a*A*c + b*B*c -
 (A*b + a*B)*d)*(n + 1) + (b*(b*d*(B*c - A*d) + a*(A*c*d + B*(c^2 - 2*d^2)))*(n + 1) - a*(b*c - a*d)*(B*c - A*
d)*(n + 2))*Sin[e + f*x] + b*(d*(A*b*c + a*B*c - a*A*d)*(m + n + 1) - b*B*(c^2*m + d^2*(n + 1)))*Sin[e + f*x]^
2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2
, 0] && GtQ[m, 1] && LtQ[n, -1]

Rule 3100

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m
+ 1)*(a^2 - b^2))), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B +
a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b,
e, f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 3110

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])*((A_.) + (B_.)*sin[(e
_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(b*c - a*d))*(A*b^2 - a*b*B + a^2*C)
*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b^2*f*(m + 1)*(a^2 - b^2))), x] - Dist[1/(b^2*(m + 1)*(a^2 - b^2)
), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(m + 1)*((b*B - a*C)*(b*c - a*d) - A*b*(a*c - b*d)) + (b*B*(a^2*d +
 b^2*d*(m + 1) - a*b*c*(m + 2)) + (b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1))))*Sin[e + f*x] - b*C*d*(m
 + 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] &&
NeQ[a^2 - b^2, 0] && LtQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 a A (a+b \cos (c+d x))^2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2}{5} \int \frac {(a+b \cos (c+d x)) \left (\frac {1}{2} a (9 A b+5 a B)+\frac {1}{2} \left (3 a^2 A+5 A b^2+10 a b B\right ) \cos (c+d x)-\frac {1}{2} b (a A-5 b B) \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx \\ & = \frac {2 a^2 (9 A b+5 a B) \sin (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 a A (a+b \cos (c+d x))^2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}-\frac {4}{15} \int \frac {-\frac {3}{4} a \left (3 a^2 A+14 A b^2+15 a b B\right )-\frac {5}{4} \left (3 a^2 A b+3 A b^3+a^3 B+9 a b^2 B\right ) \cos (c+d x)+\frac {3}{4} b^2 (a A-5 b B) \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 a^2 (9 A b+5 a B) \sin (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 a \left (3 a^2 A+14 A b^2+15 a b B\right ) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}}+\frac {2 a A (a+b \cos (c+d x))^2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}-\frac {8}{15} \int \frac {-\frac {5}{8} \left (3 a^2 A b+3 A b^3+a^3 B+9 a b^2 B\right )+\frac {3}{8} \left (3 a^3 A+15 a A b^2+15 a^2 b B-5 b^3 B\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 a^2 (9 A b+5 a B) \sin (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 a \left (3 a^2 A+14 A b^2+15 a b B\right ) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}}+\frac {2 a A (a+b \cos (c+d x))^2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}-\frac {1}{3} \left (-3 a^2 A b-3 A b^3-a^3 B-9 a b^2 B\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx-\frac {1}{5} \left (3 a^3 A+15 a A b^2+15 a^2 b B-5 b^3 B\right ) \int \sqrt {\cos (c+d x)} \, dx \\ & = -\frac {2 \left (3 a^3 A+15 a A b^2+15 a^2 b B-5 b^3 B\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 \left (3 a^2 A b+3 A b^3+a^3 B+9 a b^2 B\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 a^2 (9 A b+5 a B) \sin (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 a \left (3 a^2 A+14 A b^2+15 a b B\right ) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}}+\frac {2 a A (a+b \cos (c+d x))^2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)} \\ \end{align*}

Mathematica [A] (verified)

Time = 3.02 (sec) , antiderivative size = 176, normalized size of antiderivative = 0.86 \[ \int \frac {(a+b \cos (c+d x))^3 (A+B \cos (c+d x))}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {-6 \left (3 a^3 A+15 a A b^2+15 a^2 b B-5 b^3 B\right ) \cos ^{\frac {3}{2}}(c+d x) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+10 \left (3 a^2 A b+3 A b^3+a^3 B+9 a b^2 B\right ) \cos ^{\frac {3}{2}}(c+d x) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+10 a^2 (3 A b+a B) \sin (c+d x)+9 a \left (a^2 A+5 A b^2+5 a b B\right ) \sin (2 (c+d x))+6 a^3 A \tan (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x)} \]

[In]

Integrate[((a + b*Cos[c + d*x])^3*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(7/2),x]

[Out]

(-6*(3*a^3*A + 15*a*A*b^2 + 15*a^2*b*B - 5*b^3*B)*Cos[c + d*x]^(3/2)*EllipticE[(c + d*x)/2, 2] + 10*(3*a^2*A*b
 + 3*A*b^3 + a^3*B + 9*a*b^2*B)*Cos[c + d*x]^(3/2)*EllipticF[(c + d*x)/2, 2] + 10*a^2*(3*A*b + a*B)*Sin[c + d*
x] + 9*a*(a^2*A + 5*A*b^2 + 5*a*b*B)*Sin[2*(c + d*x)] + 6*a^3*A*Tan[c + d*x])/(15*d*Cos[c + d*x]^(3/2))

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 14.86 (sec) , antiderivative size = 950, normalized size of antiderivative = 4.66

method result size
parts \(\text {Expression too large to display}\) \(950\)
default \(\text {Expression too large to display}\) \(970\)

[In]

int((a+cos(d*x+c)*b)^3*(A+B*cos(d*x+c))/cos(d*x+c)^(7/2),x,method=_RETURNVERBOSE)

[Out]

2*(A*b^3+3*B*a*b^2)/d*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))-2*(3*A*a*b^2+3*B*a^2*b)*(-2*cos(1/2*d*x+1/2*c)*(-
2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2+(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/
2*d*x+1/2*c)^2-1)^(1/2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1
/2)))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)
/d-2/3*(3*A*a^2*b+B*a^3)*(-2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d
*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2-2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+(sin(1/2*d*x+1/2*c)^2)^(1/2)
*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d
*x+1/2*c)^2)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)^(3/2)/sin(1
/2*d*x+1/2*c)/d-2/5*A*a^3*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/(8*sin(1/2*d*x+1/2*c)^6-12
*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)/sin(1/2*d*x+1/2*c)^3*(24*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)
^6-12*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*sin(
1/2*d*x+1/2*c)^4-24*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+12*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1
/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2+8*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1
/2*c)-3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*(
-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d+2*B*b^3*((2*cos(1/2*d*x
+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*Ellipt
icE(cos(1/2*d*x+1/2*c),2^(1/2))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos
(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.14 (sec) , antiderivative size = 326, normalized size of antiderivative = 1.60 \[ \int \frac {(a+b \cos (c+d x))^3 (A+B \cos (c+d x))}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=-\frac {5 \, \sqrt {2} {\left (i \, B a^{3} + 3 i \, A a^{2} b + 9 i \, B a b^{2} + 3 i \, A b^{3}\right )} \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, \sqrt {2} {\left (-i \, B a^{3} - 3 i \, A a^{2} b - 9 i \, B a b^{2} - 3 i \, A b^{3}\right )} \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 \, \sqrt {2} {\left (3 i \, A a^{3} + 15 i \, B a^{2} b + 15 i \, A a b^{2} - 5 i \, B b^{3}\right )} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 \, \sqrt {2} {\left (-3 i \, A a^{3} - 15 i \, B a^{2} b - 15 i \, A a b^{2} + 5 i \, B b^{3}\right )} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - 2 \, {\left (3 \, A a^{3} + 9 \, {\left (A a^{3} + 5 \, B a^{2} b + 5 \, A a b^{2}\right )} \cos \left (d x + c\right )^{2} + 5 \, {\left (B a^{3} + 3 \, A a^{2} b\right )} \cos \left (d x + c\right )\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{15 \, d \cos \left (d x + c\right )^{3}} \]

[In]

integrate((a+b*cos(d*x+c))^3*(A+B*cos(d*x+c))/cos(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

-1/15*(5*sqrt(2)*(I*B*a^3 + 3*I*A*a^2*b + 9*I*B*a*b^2 + 3*I*A*b^3)*cos(d*x + c)^3*weierstrassPInverse(-4, 0, c
os(d*x + c) + I*sin(d*x + c)) + 5*sqrt(2)*(-I*B*a^3 - 3*I*A*a^2*b - 9*I*B*a*b^2 - 3*I*A*b^3)*cos(d*x + c)^3*we
ierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 3*sqrt(2)*(3*I*A*a^3 + 15*I*B*a^2*b + 15*I*A*a*b^2 -
 5*I*B*b^3)*cos(d*x + c)^3*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) +
 3*sqrt(2)*(-3*I*A*a^3 - 15*I*B*a^2*b - 15*I*A*a*b^2 + 5*I*B*b^3)*cos(d*x + c)^3*weierstrassZeta(-4, 0, weiers
trassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - 2*(3*A*a^3 + 9*(A*a^3 + 5*B*a^2*b + 5*A*a*b^2)*cos(d*x
+ c)^2 + 5*(B*a^3 + 3*A*a^2*b)*cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^3)

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+b \cos (c+d x))^3 (A+B \cos (c+d x))}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((a+b*cos(d*x+c))**3*(A+B*cos(d*x+c))/cos(d*x+c)**(7/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(a+b \cos (c+d x))^3 (A+B \cos (c+d x))}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{3}}{\cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^3*(A+B*cos(d*x+c))/cos(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^3/cos(d*x + c)^(7/2), x)

Giac [F]

\[ \int \frac {(a+b \cos (c+d x))^3 (A+B \cos (c+d x))}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{3}}{\cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^3*(A+B*cos(d*x+c))/cos(d*x+c)^(7/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^3/cos(d*x + c)^(7/2), x)

Mupad [B] (verification not implemented)

Time = 4.24 (sec) , antiderivative size = 291, normalized size of antiderivative = 1.43 \[ \int \frac {(a+b \cos (c+d x))^3 (A+B \cos (c+d x))}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2\,\left (B\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\,b^3+3\,B\,a\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\,b^2\right )}{d}+\frac {2\,A\,b^3\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,A\,a^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {5}{4},\frac {1}{2};\ -\frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{5\,d\,{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,B\,a^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {6\,A\,a\,b^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,A\,a^2\,b\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {6\,B\,a^2\,b\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

[In]

int(((A + B*cos(c + d*x))*(a + b*cos(c + d*x))^3)/cos(c + d*x)^(7/2),x)

[Out]

(2*(B*b^3*ellipticE(c/2 + (d*x)/2, 2) + 3*B*a*b^2*ellipticF(c/2 + (d*x)/2, 2)))/d + (2*A*b^3*ellipticF(c/2 + (
d*x)/2, 2))/d + (2*A*a^3*sin(c + d*x)*hypergeom([-5/4, 1/2], -1/4, cos(c + d*x)^2))/(5*d*cos(c + d*x)^(5/2)*(s
in(c + d*x)^2)^(1/2)) + (2*B*a^3*sin(c + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2))/(3*d*cos(c + d*x)^(
3/2)*(sin(c + d*x)^2)^(1/2)) + (6*A*a*b^2*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c +
 d*x)^(1/2)*(sin(c + d*x)^2)^(1/2)) + (2*A*a^2*b*sin(c + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2))/(d*
cos(c + d*x)^(3/2)*(sin(c + d*x)^2)^(1/2)) + (6*B*a^2*b*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^
2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2))